On k-partitions of multisets with equal sums

نویسندگان

چکیده

Abstract We study the number of ordered k -partitions a multiset with equal sums, having elements $$\alpha _1,\ldots ,\alpha _n$$ α 1 , … n and multiplicities $$m_1,\ldots ,m_n$$ m . Denoting this by $$S_k(\alpha _1, \ldots , \alpha _n; m_1, m_n)$$ S k ( ; ) we find generating function, derive an integral formula, illustrate results numerical examples. The special case involving set $$\{1,\dots ,n\}$$ { ⋯ } presents particular interest leads to new integer sequences $$S_k(n)$$ $$Q_k(n)$$ Q $$R_k(n)$$ R for which provide explicit formulae combinatorial interpretations. Conjectures in connection some superelliptic Diophantine equations asymptotic formula are also discussed. extend previous work concerning 2- 3-partitions multisets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

Geometric Crossover for Sets, Multisets and Partitions

This paper extends a geometric framework for interpreting crossover and mutation [5] to the case of sets and related representations. We show that a deep geometric duality exists between the set representation and the vector representation. This duality reveals the equivalence of geometric crossovers for these representations.

متن کامل

Asymptotic Enumeration of Dense 0-1 Matrices with Equal Row Sums and Equal Column Sums

Let s, t,m, n be positive integers such that sm = tn. Let B(m, s;n, t) be the number of m×n matrices over {0, 1} with each row summing to s and each column summing to t. Equivalently, B(m, s;n, t) is the number of semiregular bipartite graphs with m vertices of degree s and n vertices of degree t. Define the density λ = s/n = t/m. The asymptotic value of B(m, s;n, t) has been much studied but t...

متن کامل

On equal sums of ninth powers

In this paper, we develop an elementary method to obtain infinitely many solutions of the Diophantine equation x1 + x 9 2 + x 9 3 + x 9 4 + x 9 5 + x 9 6 = y 9 1 + y 9 2 + y 9 3 + y 9 4 + y 9 5 + y 9 6 and we give some numerical results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ramanujan Journal

سال: 2021

ISSN: ['1572-9303', '1382-4090']

DOI: https://doi.org/10.1007/s11139-021-00418-7